
he FlexRay Consortium [1] has finalized the FlexRay
Communications System Specifications Version 2.0 in
summer 2004. Long before these specifications were

made available to the general public, the FlexRay protocol
had established itself as a de facto industry standard for a
time-triggered, in-vehicle communication system. A lot of
effort has been invested in defining and validating the protocol
and in developing appropriate communication hardware. The
stage has now been reached where more attention can be
paid to developing the actual applications. With its large
bandwidth, deterministic communication behavior, and fault
tolerance mechanism, FlexRay is ideally suited to the role of a
central backbone in future ECU architectures. Standardized
communication services and easier reuse of existing ECU
functions promise to offer cost savings in the long term.
The introduction of a time-triggered bus system such as
FlexRay is doubtless a major technological advance and
needs to be successfully addressed in all phases of the appli-
cation development. This situation makes it all the
more important to build on mature and proven
products, while at the same time integrating sup-
port for FlexRay features at an early stage. Suit-
able development tools are needed to handle the
complexity of networked applications. Being one of
the first development partners in the FlexRay
Consortium, dSPACE added FlexRay support to
its product range very early on. As a partner to the
automotive industry with years of experience in
simulation technology for developing and testing
ECU applications, dSPACE focuses on the fea-
tures of FlexRay that are relevant to simulation
under real-time conditions.

Automotive hardware platforms for FlexRay
For years dSPACE has been offering powerful and proven
hardware platforms for function prototyping and ECU testing.
These platforms have been extended and can be equipped
with FlexRay communication controllers which are imple-
mented as IP modules from DECOMSYS [3]. The use of IP
modules has proven successful in handling the dynamics in
the definition phase of the FlexRay protocol. Figure 1
shows two prototyping systems from dSPACE – the Micro-
AutoBox and the AutoBox [2]. Both of them are available with
interfaces for LIN, CAN and FlexRay.
The platforms are a continuation of proven hardware con-
cepts into the realm of time-triggered bus systems. Thus, it is
not only possible to build pure FlexRay systems, but also to

implement applications in which the time-triggered bus system
has to be integrated into conventional in-vehicle control tech-
nology and in which typical automotive sensors and actuators
have to be operated. This includes providing options for con-
necting lambda and engine speed probes, processing crank-
shaft-synchronous signals, and generating output signals for
ignition and injection systems. Interfaces for incremental
encoders and for controlling electric motors by means of PWM
signals (particularly necessary in x-by-wire applications) are
also needed.

Model based design of FlexRay systems
For design and test of control functions a model based devel-
opment approach using MATLAB/Simulink® is well estab-
lished. This approach can also be applied to applications
using FlexRay as the communication system. However,
FlexRay’s underlying time-triggered approach requires addi-
tional planning steps as compared to the familiar procedure.

The model based development process must be enriched by
tools which generate a communication matrix in the time
domain, i.e. which schedule message transmissions according
to the communication relationships and execution patterns
inherent in the FlexRay application. Such tools are available
from DECOMSYS [3] and they have been integrated into a
tool combination which first became available as products in
spring 2003 and which has been updated regularly since then.
The solution is called the dSPACE RTI FlexRay Blockset [2],
and allows simulation hardware from dSPACE to be inte-
grated as nodes in a FlexRay network.
The DECOMSYS tools in the tool combination are primarily
intended for planning communication, generating code for the
fault-tolerant communication layer (FTCom) according to
OSEK/VDX [4], and configuring the FlexRay controller. The
RTI FlexRay Blockset from dSPACE is used for generating

T

Figure 1: MicroAutoBox and AutoBox – automotive hardware platforms
from dSPACE with interfaces for LIN, CAN and FlexRay.

It is Time for FlexRay
In parallel to the definition of the FlexRay protocol, supporting development solutions have
been built. They rely on proven concepts for the design and test of in-vehicle systems and also
address the demands of a time-triggered protocol. This contribution by dSPACE gives an intro-
duction to these solutions and describes how they can be used to develop advanced vehicle
control functions for the FlexRay protocol.

the application code automatically and for linking all the com-
ponents needed to execute a FlexRay application on a
dSPACE system. Execution, and simulation itself, are per-
formed with the aid of the dSPACE real-time kernel. Existing
products such as ControlDesk can be used for executing and
visualizing an experiment in the familiar way.
Figure 2 shows an example of how the integrated tool combi-
nation is used under MATLAB/Simulink. The overall system
(FlexRay cluster) in this example consists of two nodes
(hosts), on which two communicating applications (tasks) are
located. The Simulink windows display the models for the

overall system, for the parts of an individual node, and for a
task to be implemented on that node. The hosts and tasks are
modeled by means of blocks from the SIMSYSTEM blockset
from DECOMSYS. The Host Setup block from the RTI
FlexRay Blockset is used to specify that a host is realized as
a dSPACE system during simulation. The dSPACE hardware,
including the FlexRay controller that is used, is configured via
the Controller Setup block. The actual application model is
embedded in a task subsystem. It also contains the blocks
that model communication via the FlexRay bus.
In the Simulink model a FlexRay task is annotated with addi-
tional temporal attributes, indicating the execution cycle of the
task and its trigger time as an offset to the cycle start. Thus,
the sequence of task executions is statically defined at the
design stage. During run time the tasks are activated accord-
ing to these pre-defined schedules. In relation to the planned
sequence of application tasks the communication matrix is
designed in the time domain. Each message is assigned an
exclusive transmission slot within the communication cycle.
The result is a static, deterministic schedule for messages
and tasks that is determined offline.

Real-time simulation of FlexRay systems
When real sensors, actuators or communication controllers
are involved, a FlexRay application needs to be simulated in
real-time, both for rapid control prototyping and for hardware-
in-the-loop simulation. A simulation service on the hardware
platform must activate the predefined sequences for task
execution and message transmission. The services necessary
for this are defined in a time-triggered extension of the
OSEK/VDX specification called OSEKtime. An implementation
of OSEKtime in conjunction with the fault-tolerant communica-
tion layer (FTCom) provides a reliable execution basis for a

FlexRay system. The infrastructure must syn-
chronize the local time of the application simula-
tion to the global time on the FlexRay bus. The
local time is the basis for guaranteeing the
correct timing of task execution. Error situations
can also be detected and responded to. Finally,
idling behavior is possible, i.e., the tasks can be
executed without being synchronized to a
FlexRay system. This makes it possible to
measure the execution times of the tasks, for
example. Resynchronization to the bus directly
from idling behavior is possible. The necessary
components of OSEKtime have been added to
the existing real-time kernel of dSPACE sys-
tems. This allows time-triggered and angle-
based tasks to be executed in the same system,
with time-triggered tasks having higher priority
to guarantee deterministic behavior.

Conclusion and Outlook
The solutions presented here are currently
demonstrating their capabilities in various pro-
jects by companies in the FlexRay Consortium,

for example, in the field of chassis development. The applica-
tions range from advance development projects right through
to projects at the transition to production. Thus, there is al-
ready a demand for FlexRay tools with long-term viability, for
example, for designing hardware-in-the-loop simulators that
will validate future FlexRay based production projects. The
paper demonstrates that the design of FlexRay systems can
now begin, as proven tools have been adapted to the new
challenges and will continue to be developed in future.

References
[1] FlexRay Consortium. http://www.flexray.com.
[2] Real-Time Interface FlexRay Blockset. dSPACE GmbH,

Paderborn. http://www.dspace.de/goto?RTIFlexray.
[3] DECOMSYS GmbH. http://www.decomsys.com.
[4] OSEK/VDX Consortium. http://www.osek-vdx.org
……………………………………………………………….
Dipl.-Inform. Joachim Stroop is Product Manager for System and
Function Design Tools with responsibility for FlexRay products at
dSPACE GmbH.

Dipl.-Ing. Ralf Stolpe is Group Leader for Multiprocessor and Distrib-
uted Systems at dSPACE GmbH. He is responsible for the develop-
ment of FlexRay tools.
……………………………………………………………….

Figure 2: MATLAB/Simulink model of a sample FlexRay application.

